个人介绍
深度贝叶斯学习
提供学校: 西安电子科技大学
院系: 数学与统计学院
课程英文名称: Deep Bayesian Learning
课程编号: MS7001L
学分: 2
课时: 32
课程介绍
1. Summary

The course addresses Bayesian methods for solving various machine learning and data analysis problems such as classification, regression, dimension reduction, topic modeling, and so on.

The course starts with an overview of canonical machine learning (ML) applications and problems, learning scenarios, etc. and then introduces foundations of Bayesian approach to solve these problems. Bayesian approach allows one to take into account subject domain knowledge and/or user’s preferences through a prior distribution when constructing the model. Besides, it offers an efficient framework for model selection. We discuss which prior distributions types are usually used, limit properties of a posterior distribution, and provide some illustrations of the Bayesian approach. 

The practical applicability of Bayesian methods in the last 20 years has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation, as well as posterior simulation methods based on the Markov chain Monte Carlo approach. As a result Bayesian methods have grown from a specialist niche to become mainstream. Therefore, we devote a second part of the course to approximation tools, vitally important for Bayesian inference, and provide examples how to use Bayesian approaches to automatically select features, tune the regularization parameter in regression and classification, etc. For each problem, we introduce suitable Bayesian models and show how they are used to implement inference in the given data analysis problem. 

The last part of the course is devoted to advanced Bayesian models and methods, namely, Gaussian Processes and deep Bayesian neural networks, which have become widespread in the last 5-8 years. We discuss deep Bayesian framework and then illustrate its applications through construction of deep variational autoencoders, approaches to variational dropout, Wasserstein Generative Adversarial Networks, deep Kalman filter, etc. Within practical sections, we show how to use these models and methods to crack various real-world problems. 

The course requires familiarity with
○ Calculus and Numerical Linear Algebra
○ Optimization Methods
○ Probability and Statistics

Software requirements: Python 3.6 and
○ PyTorch 0.4.1
○ Pyro 0.2.1
○ gpytorch: latest
○ Numpy: latest
教学大纲

2. Content of the Course


Total discipline workload is 32 credit hours.

 


Topic

Annotated Topic content

1

2

3

1

Foundations. Exact Inference

Intro. MLE. KL, etc.

Exponential Family, their properties. Laplace Approximation

2

Non-exact Inference: Variational Approaches

Expectation-Maximization: PCA

Variational Inference and ELBO

3

Non-exact Inference: Deep Bayes

Variational AutoEncoders

4

Non-Exact Inference: MCMC Approaches

 

Variational Dropout

Normalizing flows

5

Gaussian Processes for Bayesian Machine Learning

RKHS, Multioutput, GP-GLM

Scalability issues. Induced points, Fourier features

Bayesian optimization. Active learning using GP

考核方法

3. Assessment

Team projects

 

Examples of the topics:

1.    Deep kernels and Gaussian processes

2.    Bayesian Active Learning

3.    Bayesian black-box optimization

4.    Multi-Fidelity Gaussian Process regression

5.    Bayesian change-point detection

6.    Comparison of approaches for approximation of intractable Bayesian models

7.    MCMC for Bayesian inference

8.    Various applied problems with usage of Bayesian ML methods

 

Final course project (groups up to 3):

·      Default project topics will be announced on week 2

·      Stages: Project proposal (week 2-3) 

·      Presentation and Final Report submission (week 4)

 

Final Project types

·      Applied: pick an interesting application and figure out how to apply machine learning algorithms to solve it;

·      Algorithmic: propose a new learning algorithm, or a variant of some existing one to solve a general problem or group thereof.

The Final Report is a PDF:

·      Introduction: motivation and problem statement

·      Related work and brief literature overview

·      Dataset Description

·      ML Methods and algorithms, proposed algorithm modifications, etc.

·      Experiments/Discussion: details about (hyper)parameters and how you picked them, cross-validation metrics and details, discussion of failures and successes, equations, results, visualizations, tables, etc.

·      Conclusion, references, acknowledgements and contributions

 

Ø  up to 5 pages including figures, tables, appendices (in algorithmicprojects only), and excluding references/contributions

Ø  source code (scripts, notebooks) in ZIP or on Github

 

The main assessment criteria:

·      General evaluation criteria for the Report

  o  significance, novelty: toy/real problem or common/unexplored method 

  o  technical quality: insightful choice of clever reasonable methods, cross-validation and general quality assessment of used tools/methods

  o  general report quality and structure

  o  relevance to the topics covered during the course

·      The Project presentation

  o  presentation quality and clarity

  o  relevant technical content and summary

  o  the knowledge demonstrated by the team

 

参考教材

4. References

Course materials/Textbooks:

  http://wol.ra.phy.cam.ac.uk/mackay/itila/book.html



外教简介

Name:  Evgeny Burnaev

Email:   e.burnaev@skoltech.ru

            burnaevevgeny@gmail.com

Website:  https://www.researchgate.net/profile/Evgeny_Burnaev

                https://arxiv.org/a/burnaev_e_1.html

                   http://faculty.skoltech.ru/people/evgenyburnaev

                   http://adase.group/




课程评价

教学资源
课程章节 | 文件类型   | 上传时间 | 大小 | 备注
1.1 第一课时
文档
.pdf
2019-03-13 7.89MB
 
文档
.pdf
2019-03-13 6.31MB
 
视频
.mp4
2019-03-13 313.37MB
 
视频
.mp4
2019-03-13 261.75MB
1.2 第二课时
文档
.pdf
2019-03-15 2.23MB
 
文档
.pdf
2019-03-15 1.91MB
 
视频
.mp4
2019-03-15 304.98MB
 
视频
.mp4
2019-03-15 304.88MB
 
视频
.mp4
2019-03-15 377.27MB
1.3 第三课时
文档
.pdf
2019-03-15 298.95KB
 
视频
.mp4
2019-03-15 309.76MB
2.1 第一课时
文档
.pdf
2019-03-20 3.56MB
 
视频
.mp4
2019-03-20 301.80MB
 
视频
.mp4
2019-03-20 294.64MB
 
视频
.mp4
2019-03-20 296.09MB
2.2 第二课时
文档
.pdf
2019-03-22 6.76MB
 
视频
.mp4
2019-03-22 72.32MB
 
视频
.mp4
2019-03-22 336.68MB
 
视频
.mp4
2019-03-22 318.70MB
2.3 第三课时
文档
.pdf
2019-03-22 850.62KB
 
视频
.mp4
2019-03-22 385.84MB
 
视频
.mp4
2019-03-22 309.77MB
3.1 第一课时
文档
.pdf
2019-03-23 17.78MB
 
文档
.pdf
2019-03-23 5.89MB
 
视频
.mp4
2019-03-23 312.31MB
 
视频
.mp4
2019-03-23 316.69MB
3.2 第二课时
文档
.pdf
2019-05-23 1.45MB
 
文档
.pdf
2019-05-23 5.89MB
 
视频
.mp4
2019-05-23 388.77MB
 
视频
.mp4
2019-05-23 413.63MB
 
视频
.mp4
2019-05-23 451.86MB
4.1 第一课时
文档
.pdf
2019-05-27 7.36MB
 
视频
.mp4
2019-05-27 360.59MB
 
视频
.mp4
2019-05-27 386.20MB
 
视频
.mp4
2019-05-27 353.02MB
4.2 第二课时
文档
.pdf
2019-05-27 22.89MB
 
视频
.mp4
2019-05-27 422.95MB
 
视频
.mp4
2019-05-27 355.66MB
4.3 第三课时
文档
.pdf
2019-05-29 1.02MB
 
视频
.mp4
2019-05-29 307.77MB
5.1 第一课时
文档
.pdf
2019-05-30 3.00MB
 
视频
.mp4
2019-05-30 283.18MB
 
视频
.mp4
2019-05-30 342.53MB
 
视频
.mp4
2019-05-30 296.53MB
5.2 第二课时
文档
.pdf
2019-05-31 10.40MB
 
文档
.pdf
2019-05-31 387.54KB
 
文档
.pdf
2019-05-31 24.96MB
 
视频
.mp4
2019-05-31 359.67MB
 
视频
.mp4
2019-05-31 298.70MB
 
视频
.mp4
2019-05-31 317.25MB
6.1 3.13报告
文档
.pdf
2019-03-14 311.00KB
6.2 3.13第一场
文档
.pdf
2019-03-14 25.26MB
6.3 3.19第二场
文档
.pdf
2019-03-21 1.66MB
6.4 5.29第三场
文档
.pdf
2019-05-30 3.20MB
7.2 随堂测试
文档
.pdf
2019-07-02 121.67KB
 
文档
.pdf
2019-07-02 150.00KB
提示框
提示框
确定要报名此课程吗?
确定取消